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Architecture-dependent signal conduction in model networks of endothelial cells
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Signal conduction between endothelial cells along the walls of vessels appears to play an important role in
circulatory function. A recently developed approach to calculate analytically the spectrum of propagating
compositional waves in models of multicellular architectures is extended to study putative signal conduction
dynamics across networks of endothelial cells. Here, compositional waves originate from negative feedback
loops, such as between Ca?* and inositol triphosphate (IP;) in endothelial cells, and are shaped by their
connection topologies. We consider models of networks constituted of a main chain of endothelial cells and
multiple side chains. The resulting transmission spectra encode information concerning the position and size of
the side branches in the form of gaps. This observation suggests that endothelial cell networks may be able to
“communicate” information regarding long-range order in their architecture.

DOLI: 10.1103/PhysRevE.81.041915

I. INTRODUCTION

A functional microcirculation consists of different mi-
crovessel types (generally defined as arterioles, capillaries,
and venules) organized into a network comprising an effec-
tive perfusion circuit. During embryo development or fol-
lowing an angiogenesis burst during tissue repair in the
adult, an immature network must remodel and adapt in order
to form an effective new vascular tree. In the embryo, a new
vascular plexus forms as the result of vasculogenesis that
eventually evolves through a process involving artery-vein
specification, vessel revision, and vessel remodeling [1].
During neovascularization following implantation, an imma-
ture plexus forms from existing vascular elements that even-
tually forms a hierarchical vascular tree [2]. In both situa-
tions, inflow-outflow paths are necessarily redefined, vessel
diameters are expanded or rarefied (structural adaptation),
and network architecture is reorganized. Given that these ac-
tivities are all related to forming a new network, they suggest
that coordination of changes within individual vessel ele-
ments across the forming network must occur. However,
very little is known concerning what, if any, long-range
network-wide signal dispersion occurs or if the different
types of information inherent in such global information
transfer are relevant in the vasculature.

A theoretical analysis of the responses to the many differ-
ent integrated stimuli leading to structural adaptation of mi-
crovessels predicts that an upstream transfer of information
from the distal vessels to arterioles and feed arteries is re-
quired [3]. While no molecular or cellular mechanism of
signal conduction specific to this structural adaptation re-
sponse or the other aspects of network revision has been
identified, other examples of signal propagation within the
microvessel network have been described. Stimulation of
distal microvessels with adenosine triphosphate (ATP) or
acetylcholine leads to the dilation of upstream microvessels
[4,5]. These examples of vasoactive-related signal conduc-
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tion have primarily involved signal propagation along a
single contiguous line of vessel elements along a relatively
modest distance. The mechanisms of signal conduction in
these situations are not fully defined. However, intracellular
Ca?* dynamics and gap junction activity are likely to be im-
portant [6,7]. Whether or not these vasoactivity-related
mechanisms might also be the basis for a network-wide com-
munication scheme is not known. One way to address this is
to define the theoretical structure of such a communication
system and determine if known conduction processes are ca-
pable of functioning in the necessary capacity.

In considering the hypothetical phenomena of network-
wide communication, the types of information that could be
relevant must combine dynamical and structural complexity.
The problem at hand is, therefore, to construct a framework
for integrating models of intracellular pathways with non-
trivial multicellular architectures including cell-to-cell inter-
actions. The signaling pathways could be described by
coupled linear or nonlinear multicomponents reactions. The
nontrivial multicellular architectures may be one, two, and
three dimensional with topological complexity. Cell-to-cell
interactions may include short- and long-range diffusion-
driven (involving mass transport) or signal-driven (nondiffu-
sive) coupling.

Therefore, we set out to develop a theoretical model of
network-wide distribution of information along a network of
endothelial cells. We are exploring a possible mechanism of
information transmission through long-range signal conduc-
tion along chains and networks of chains of endothelial cells.
These wavelike signals originate from (a) negative feedback
loops between Ca®* and inositol 1,4,5-triphosphate (IP5) in
endothelial cells and (b) cell-to-cell interactions and contain
information on the spatial structure of the networks encoded
in their wave-number (frequency) spectrum. Recently, Ca>*
waves that propagate along the endothelium have been
shown to act as long-range signals that contribute to vasodi-
lation of arterioles [6]. Gap junctions between cells can also
facilitate the transmission of Ca®* signals between cells to
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control blood vessel function [7]. There are other examples
of multicellular networks such as the folliculate cell network
in the pituitary gland that form circuitry in which informa-
tion is relayed over long distances via Ca** wave propaga-
tion [8]. In this example, Ca’>* wave propagation was shown
to depend on gap junction signaling. At the level of the in-
dividual cell, these signals rely on the intake or release of
Ca’* jons from intracellular stores such as the endoplasmic
reticulum (ER). The physiological state of the cytoplasm of a
cell determines the nature of the dynamics of calcium release
and intake [9]. The physiological state may be bistable with
two resting states for calcium concentration; low basal and
high corresponding to replete ER and empty ER, respec-
tively, and separated by an intermediate unstable threshold
concentration. The bistable state may lead to traveling fronts
in spatially extended systems. The physiological state may
also be that of an excitable cytoplasm and may be considered
to be a variant on the bistable state with the possibility of
returning to the low basal concentration beyond a high cyto-
sol concentration threshold. Excitable cytoplasm may pro-
duce pulse waves in spatially extended systems. Finally,
many cells exhibit oscillatory cytoplasm states which may
lead to waves with temporal and spatial periodicity.

Within this context, the objective of the present study is to
investigate the dependence of long-range compositional sig-
nals on cell network architecture in models of endothelial
cell networks. This work is based on a recently established
linear theory of multicellular networks that enables the de-
termination of architecture-dependent compositional excur-
sions from steady-state values in the form of compositional
traveling waves [10]. Starting from an infinite length chain
of endothelial cells serving as a backbone, the theory is used
to build increasingly more complex networks by grafting
side chains of cells onto the backbone. These models of en-
dothelial cell networks show that resonant filtering of propa-
gating compositional waves with specific wavelength (wave
number), a nontrivial behavior, emerges as a result of adjoin-
ing the finite length segments of cells onto the backbone. For
periodic or nearly periodic arrangements of side chains along
the backbone, additional filtering arises from scattering by
the periodic structure. We show that the complete spectrum
of propagating signals contains superposed and separate
structural information concerning the spacing between the
side branches as well as the length of the side branches.

In Sec. II of this paper, we review in some detail the linear
theory of multicellular networks. We pay particular attention
to the application of the theory to calcium signals in
branched networks of endothelial cells. Signal propagation is
analyzed in terms of transmission spectra in the results and
discussion section (Sec. III). In that section, we demonstrate
that the transmission spectra contain information that relates
to the length of the side chains as well as their arrangements
along the backbone. Conclusions are drawn in Sec. IV.

II. MODELS AND METHODS

A. Reaction-diffusion model of a chain of endothelial cells

Othmer and Scriven, while analyzing the onset of insta-
bility at homogeneous steady states of multicellular net-
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FIG. 1. (a) Multicellular chain forming an infinite backbone for
the formation of composite cellular networks by coupling (b) a
single side chain of length L’ on an infinite backbone and (c) mul-
tiple chains along the backbone.

works, developed an elegant method that decouples the in-
tracellular biochemical dynamics from the network structure
of an underlying reaction-diffusion problem [11,12]. They
assumed a mixture of n reactants in each one of the N cells,
each attached to one or more other cells to form the desired
topology. The small excursions around the steady-state con-
centration values of cell u is represented by the n X 1 vector
x® which is solution of a linear vector differential equation
given by

dx™
dt

=DAWxW L Kx®W,  u=1,...,N. (1)

The first term following the equal sign gives the rates of
change due to transfer between directly interacting cells. The
rates of change due to intracellular reactions are represented
by the second term. The elements dij, i,j=1,...,n, of the
nXn transfer matrix D quantify the effect of reactant j on
the transfer of reactant i through the barrier separating adja-
cent cells. The nXn Laplacian AMWx®=xw+D(5)—2x1)(r)
+x®(¢) in Eq. (1) encodes the connection pattern among
the cells. We use C, to represent the resulting structural ma-
trix. For instance the structural matrix C., of an infinite chain
of cells [see Fig. 1(a)] has the familiar tridiagonal form

=)
—
|
\S]
—
(=)

2)

The three nonzero entries in each row correspond to the co-
efficients in the discrete approximation of the Laplacian.
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In Eq. (1), the reaction matrix K represents a linearized
intracellular reaction dynamics with the elements, k,-j, i,j
=1,...,n, representing the collective effect of reactant j on
the reactant i. Assuming spatially homogeneous systems,
both D and K are cell independent. The time progress of
concentration excursions in all of the cells are concatenated
into a Nn X 1 column vector given by

N
X(1) = 2 u, ® eKrady), (3)
k=1

with ® representing the tensor product. In Eq. (3), a; and u,,
k=1,...,N, are the eigenvalues and eigenvectors of the con-
nectivity matrix, C,, respectively. The n X 1 vector yg is the
projection of the initial condition vector X,=x(¢=0) onto a
derived set of basis vectors spanning the vector space that
includes x(7).

The intracellular model that we consider here is that of
small concentration excursions in the form of small ampli-
tude oscillations surrounding a stable point in the dynamics
of a cytoplasm. Our model may also represent low amplitude
oscillations in an oscillatory cytoplasm. These oscillatory in-
tracellular behaviors may be considered to result from com-
plex feedback loops. As an example, we treat the case of a
two-component negative feedback loop where one com-
pound activates the production of the second which in turn
inhibits the first one. Within endothelial cells of arterioles, a
calcium based signaling pathway exists that contains a two-
component negative feedback loop. This loop occurs be-
tween Ca’** and IP;. This inositol phospholipid signaling
pathway is started by an extracellular signal molecule that
activates a transmembrane G-protein coupled receptor which
in turn activates phospholipase C-B. Phospholipase C-B
cleaves intracellular membrane bound phospho inositol 4,5-
bisphosphate [P1(4,5)P,] causing the cytoplasmic release of
IP;. Cytoplasmic IP; can bind and open IP; gated Ca®* chan-
nels in the endoplasmic reticulum leading to increased cyto-
plasmic Ca’* concentration. IP5 concentration is degraded by
phosphorylation via Ca?* regulated kinase. The cytoplasmic
inositol 1,4,5-triphosphate 3-kinases (IP;Ks) are a group of
calcium-regulated inositol polyphosphate kinases that con-
vert IP; into inositol 1,3,4,5-tetrakisphosphate. This later
specie is inactive as a Ca®* release inducer, thus reducing
intracellular Ca®* concentration. The overall effect of this
signaling cascade is that of a two component (Ca’* and IP;)
negative feedback loop. This type of feedback loop has been
shown to lead to Ca2* and IP; oscillations. Of relevance here,
the frequency of these oscillations can be controlled by cel-
lular signaling [13]. For the sake of mathematical tractability,
the model developed herein assumes intracellular reaction
dynamics involving only the two chemical species (i.e.,
n=2): IP; and Ca**. The model is simplified further by lin-
earization of the reaction dynamic equations. Therefore, for
the intracellular dynamics, an activator-inhibitor pair is as-

sumed so that
ro—-r
K= ( , ) (4)

We further assume that the active and passive diffusivities
are the same for both reactants such that
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b (d’ d ) )
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The constants d’, r' <0 on the main diagonals are self regu-
lation terms whereas the off-diagonal terms d >0, »<<0 are
cross coupling terms. The opposite signs for the off-diagonal
elements in K are sufficient to obtain a self oscillatory be-

havior for negligible r' [14].
To illustrate the construction of a solution for the compo-

sition along an infinite chain, we write the eigenvalues and
eigenvectors corresponding to the operator matrix of Eq. (2)

[15]:

k
a=—4 sin2<%),

1 eikao _,,)T’ (6)

u, = ( .. e—ikao
where k is the propagation constant and ay is the lattice con-
stant. uy, is a discrete complex sinusoidal function with wave
number k. k is a measure of the spatial variation in the eigen-
vectors. The eigenvectors of Eq. (6) correspond to propagat-
ing waves, periodic function in ka, defined over the interval
[—7,7]. By symmetry we limit this interval to the positive
half, namely, [0, ]. These eigenvectors are isomorphic to
vibrational waves in a one-dimensional harmonic crystal de-
fined on the positive half of the first Brillouin zone.

Notice that each eigenvector is of infinite length and its
mth element u, ,, represents the mth cell in the chain, where
m is an integer. We also use initial profiles of spatial expo-
nential variations of wave vector k, for both reactants in cell
m. With an arbitrary phase difference of —7m= 6= , the ini-
tial condition for cell m is chosen to be

) gikoaom
X()m = (ei(k0a0m+l9) ' (7)

After a significant amount of algebra, assuming d~0 and
taking #=—/2, the composition vector of Eq. (3) is ob-
tained in the form

(8)

e(r’+ak0d')tei(k0aom+rt) )

x(’")(t) — (

_ ie(r'+ak0d')lei(k0a0m—rt)

The profile for the first component has a backward traveling-
wave component eitkoaom+rt) and the second, a forward
traveling-wave component e/*0%”=")  Both profiles also
share a common attenuation term e+ The initial —7/2
phase difference is preserved and both waves travel at a con-
stant speed, v=r/k(. The leading attenuation term disappears
when r’ +ak0d' =0. This later condition implies that the cells
are able to regulate r’ for a given wave vector. Moreover,
control of the frequency of the traveling-wave term in Eq. (8)
requires that endothelial cells are able to regulate r. Fre-
quency of the Ca®* and IP; oscillations has been shown to be
controlled in endothelial cells by stimulus concentration

[13].
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B. Network of endothelial cells composed
of a backbone with side chains

To integrate biological organization from cellular level to
complex network architecture, we use the interface response
theory (IRT). IRT augments Scriven-Othmer’s method by
solving for the eigenvalues and eigenvectors of nontrivial
connectivity matrices [15]. A uniform chain of infinitely
many cells is used as a reference system and subsequently
denoted the bulk system. The Green’s function G of the
bulk system is the inverse of an operator H, (here character-
ized by the connectivity matrix, C,,) that represents the in-
teractions among cell sites along the chain. The element
Go(n,n’) of the bulk Green’s function denotes the effect ob-
served at site n in response to a perturbation applied at site
n'. Our objective is therefore to determine the Green’s func-
tion g of nonuniform composite networks of cells. The
Green’s function of a composite network, g, is the inverse of
the connectivity matrix, C,. This later matrix has lost the
tridiagonality of the bulk chain and its inversion is therefore
not trivial. IRT was developed to address this issue. A review
paper [16] and references therein list some of the application
areas of IRT to condensed matter physics with numerous
examples from the literature. The integration of Othmer and
Scriven’s approach and the IRT to the development of a lin-
ear theory of biological networks and architecture was re-
cently reported [10].

IRT is used to calculate the eigenvalues and eigenvectors
of structural matrices describing multicellular networks from
homogeneous infinite bulk structure through series of cou-
pling operations. We illustrate the IRT for the construction of
nontrivial architectures by first coupling a single finite-length
chain of cells onto an infinite backbone chain of cells [Figs.
1(b)] and multiple side-chains on the same backbone [Fig.
1(c)]. We use M to denote the set of sites within the interface
domain of the nontrivial architectures. For a single side
chain, M is composed of the sites {p;,1’} where p; is also
taken as the origin along the backbone. D denotes the space
of the composite architecture, that is, any site n along the
backbone or any site j' along the side chain. In the case of
the network composed of multiple side branches, M includes
the sites {p;,1’,p>,1",p3.1%, ..., p;, 17}, Again the space
D is that of any site along the backbone or the side branches.
The eigenvectors of a composite system depend on those of
the bulk system as given by [17]

u(D)=U(D) - UM TA (M,M)A(M,D), 9)

where U(D) is an eigenvector of the collection of individual
bulk systems prior to the coupling operation. U(M) is the
same eigenvector but limited to the interface domain M. A is
defined as the interface response operator with the first argu-
ment giving the sites of the response in M and the second,
the site of the action in D that leads to the response. The
matrix A(M,M) is defined as I,,+A(M,M), where I, is an
identity matrix with the dimensions of the set M. A(M,D)
can be written in terms of a perturbing operator (such as a
coupling operator), Vi(M,M), applied to the Green’s func-
tion between points in M and D as given by
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A(M,D)=V{(M,M)G(M,D). (10)

Notice that G(M,D) is the Green’s function of a reference
composite system prior to the coupling, i.e., an infinite chain
and uncoupled finite chains of cells. It is constructed from
the Green’s functions of the homogeneous constitutive media
limited to the geometrical domains of the finite constitutive
blocks used to build the final architecture.

We review briefly the method in the case of the multicel-
lular network composed of an infinite chain [Fig. 1(b)] with
a single finite side chain. For the cellular system given in
Fig. 1(b), the spaces D and M are defined as D
={D,={->,...,-1,0,1, ..., U{D,={1",2",...,L'}} and
M={0,1'}. The coupling operator is a 2X?2 matrix,
V(M ,M), given by

-1 1
VI(M,M)z(I _1>. (11)

In this matrix, the first and second columns or rows corre-
spond to the cell at location p1=0 of the infinite chain and
the cell 1" at the tip of the side chain, respectively. Depend-
ing on its arguments, G(M,D) can take one of four possible
forms;

Gy(m,n), if m=0 and n € D,
0, if m=1" and n € D,
g(m,n), if m=1 and n € D,
0, if m=0 and n € D,,

G(me M,n e D)=

(12)

where G is the Green’s function of the infinite chain and g
is that of the side chain. G, was previously given as [18]

t|m—n [+1

Gy(m,n) = 7o

= (13)

where r=¢*%, g was derived as [19]

t\m—n\+1 + l(m+n) t2L'+l

gmn)=—"3———+ RIS

t
X (¢ g glnmm) g glm=n)  fmbn=1)y (1)

where L' is the length of the side branch. The boundary
conditions at the ends of the finite segment are reflective.

For the multicellular network composed of multiple
chains [Fig. 1(c)], we define the spaces D and M as

D={-o,...,—1,0,1,...,0} U{{1",2", ..., L'},
{17,2", ..., L} {1® 20 L8y {1020, L0y
and M={p,=0,1",p,,1",p5,1%, ... . p;,1?}. In this case,

the coupling operator is a 2N, X 2N, matrix (where N, is the
number of side chains) which form is given by
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-1 1 0
1 -1 0
0 0
vimM.m)=l 0 0
0 0 0
0 0 0

PHYSICAL REVIEW E 81, 041915 (2010)

0 0 0
0 0
1 0 0
-1 0 0 (15)
0 0 -1 1
0 0 1 -1

To calculate A(M ,M)=I(M ,M)+ V(M ,M)G(M,M), one needs the Green’s function of the reference system, G(M , M), which

takes the form for our model of a network:

Go(p1p1) 0 Go(p1p2) 0
0 g, (11" 0 0
Go(PzP 1) 0 Go(Psz) 0
0 0 0 g, (1"1")
GM.,M)=| Gy(psp1) 0 Go(psp2) 0
0 0 0 0
Go(pip1) 0 Go(pip2) 0
0 0 0 0

In this matrix the odd entries (row or column) correspond to
locations along the backbone in M and the even entries cor-
respond to the position of the first cell of the side branches
(also in the space M). From Egs. (13) and (14), the elements
of this matrix are therefore

fpimpjl+l

Go(pip)) = Iy
t+1thi
(t=1)(1 =74y’

and

g,(10,10) = (17)

We chose the reference eigenvector U(D) to correspond to a
plane-wave propagating along the backbone only such that
U(D)={r",0}. This vector is nonzero for any site, n, along
the infinite chain, and zero in the finite side chains. The
eigenvectors of the network structure along the backbone
take the form

ul = e*0 —[1 = T(ik)]e ™ 0" if n<p,,
ul = T(ik)e™ ™" if n> p,,

uz — eikaon _ [1 _ fA(l-k)]e—ikaon _ va(ik)gikuon

if p;<n=pj, (18a)

where

Go(p1p3) 0 Golpip) 0
0 0 0 0
GO(P2P3) 0 Go(Psz) 0
0 0 0 0
Go(psp») 0 Golpsp) 0 (16)
0 gs(1(3)1(3)) e 0 0
Go(pips) 0 Golpipy) 0
0 0 0 gs(l(l)l(l))

T(ik)=1- VDA™ (M. M) e

X(— eikao(l—pl) eikao(l—pl) _eikao(l—pl) eikao(l—pl)),

(18b)
T,(ik) =1 - UM)A™ (M M);
wlik)=1- M Gikag)r Zp
X(— eikao(l—pl) eikao(l—m) .
_ eikuo(l—pi) eikuo(l—Pi) 0-- .)’ (lgc)
Ay -1 .
TB(lk) = U(M)A (M’M) (eikao)Z _ 1
X (0 - 0= ekao+pin) gikag(+pyy) .. _ ikag(l+p)y
(18d)

To obtain the composition excursions along the backbone,
we employ the same initial condition as that of the infinite
chain given by Eq. (7) with =/2. Combining Egs. (3) and
(7), and (18) and after numerous algebraic steps and assum-
ing that we neglect self promotion/degradation r'~0 and
diffusion d’ ~0, the compositional variations along a back-
bone of a branched system at some cell m beyond the
branched region of the backbone are given in compact form
by

X (e) = x{" (1) + x5 (0), (19)

where
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l

k=0 eirte(r’+akd')t
A= 2

- —irt (r/+akd/)t

J=1 k=— e e
A A A pJ:I . .
T(lk)[]ji(lk) _ T(zk)] 2 elkao(m+n)ezk0a0n_
n=p+1

Pj=1
’]A"(lk)’i;(lk) E eikao(m—n)eikoaon
n=p+1
(20)
and

ei(rt+k0a0m)e(r’+aknd’)r

m .

x(2 >(t) - |T(lk0)|2(_ iei(—rt+k0a0m)e(r’+ak0d’)t ) ’ 1)
The functions, 7(ik), f"A(ik), and fg(ik) contain the structural
information about the architecture of the network (i.e., num-
ber, length and position of the side chains). Information con-
cerning the architecture of the multicellular network is there-
fore embedded into the composition excursion, M), 1t is
therefore possible that a cell at some location m > p; under-
goes composition fluctuations that are representative of the
spatial organization of the cells in the entire network. To
understand in more details the relationship between the com-
position excursions and the architecture, we focus on the
analysis of the second term in Eq. (19), that is, Eq. (21). This
is the simplest term contributing to the composition excur-
sions that can be analyzed. However, the first term [Eq. (20)]
contains structural information similar to that of Eq. (21) but
in a less transparent form. Equation (21) can be visualized as
a traveling wave with amplitude decaying spatially. The pref-

actor |T(iky)|* has all the properties of a transmission coeffi-
cient. This transmission coefficient along the backbone of the
network is defined as u(D)/U(D) and can be calculated nu-
merically using Eq. (18b) for systems containing more that
one side branch. In the analytical case of a single side-
branch, for 0 =kay<<r, there are exactly L’ transmission

zeros at which |T(ik)|>~0. These zeros are located at z,(cz)o
=(m/2)2v+1)/(2L' +1) for v=0,1,...,L’. This result re-
veals a quasistanding wave nature to the left of the side

branch (m=0). The first part in each row of Eq. (13) repre-

sents a proper standing wave weighted by 7(ik)*. The second
term in both rows represent traveling waves weighted by

|T(iko)|% At the transmission zeros of |T(iky)|?, the traveling-
wave components are cancelled, leaving behind a proper

standing wave pattern for each reactant weighted by 7(ik)*, a
nonzero complex number in general. The properties of the
transmission coefficient are described in more details in Sec.
III for networks composed of multiple side branches of vari-
ous lengths as well as positions along the backbone.

III. RESULTS AND DISCUSSION

In this section we report signal transmission spectra for
several contrived network models that exhibit different struc-
tural features. We pay particular attention to specific signa-
tures of the architecture in the form of pass and stop bands in
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FIG. 2. Transmission coefficient |7(iky)|? along the infinite mul-
ticellular chain backbone as a function of kay for three lengths, L',
of a single side branch: (a) L'=1, (b) L'=2, and (¢) L'=5.

the transmission spectra. We consider networks composed of
side branches of lengths ranging from 1 to 5 cells and sepa-
ration distances between adjacent side branches ranging from
1 to 4 intercellular spacings. These numbers are based on
experimental and theoretical observations of vascular net-
work formation in vitro [20,21]. In these studies, the authors
found that the chord length in the percolation network of
endothelial cells that form during the early stages of assem-
bly of vascular networks on two-dimensional (2D) gels range
between approximately 100—200 wm. This interval corre-
sponds to a range of 3—6 cells if one considers that endothe-
lial cells possess an average length of approximately 30 um.

We first consider the model of a single finite-length side
branch grafted on an infinite backbone. The transmission
spectra of Fig. 2 illustrate the effect of the number of endot-
helial cells in the side chain. These spectra exhibit zeros of
transmissions at specific wave numbers (see Sec. II for exact
analytical expression for zkuo). The transmission drops to
zero at kay=1 and beyond as the eigenvectors become non-
propagative. The zeros of transmission are associated with a
resonant coupling between the oscillatory modes of the back-
bone and of the side chain. There is a one-to-one relation
between the number of zeros of transmission and the number
of cells in the side chain. It is therefore possible for a cell
located in the backbone some distance away from the side
branch to sense its presence as well as the number of cells
that constitute it. This sensing may take place in the form of
frequency dependent calcium sensing mechanisms. For in-
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FIG. 3. Transmission coefficient, f(iko)|2 along the infinite mul-
ticellular chain backbone as a function of ka, for (a) N.=1 side
chain, (b) N,=2 side chains at p;=0 and p,=4 and (c) N.=10 side
chains grafted periodically on backbone cells, 0, 4, 8, 12, etc. The
length of the side chains is constant at L' =5.

stance it is known that calmodulin-dependent protein kinase
II (CAM kinase II) is able to decode the frequency of Ca**
spikes into different amounts of the enzyme activity via au-
tophosphorylation [22]. CaM kinase II associates with Ca>*
bound calmodulin allowing autophosphorylation. CaM ki-
nase II activity increases exponentially with Ca®* frequency.
At high frequency the kinase does not have time to deactive
between spikes leading to increase in activity. At low fre-
quency the dissociation of calmodulin can take place be-
tween spikes thus rendering CaM kinase II inactive. CaM
kinase II can be found in many different tissue and more
specifically endothelial cells [23,24]. This type of frequency
responsive intracellular mechanism offers a possible mecha-
nism for endothelial cells to decode transmitted signals that
encode multicellular architectural information such as those
described in the present paper.

We now consider several side branches constituted of the
same number of cells and arranged along the backbone with
a constant spacing. Coupling of the resonant modes of each
individual chain through the backbone leads to a broadening
of the zeros of transmission due to degeneracy lifting. Figure
3(b) clearly shows the separation of the zeros of transmission
into two transmission dips. One type of dip is associated with
the original chain resonance and still exhibits complete ab-
sence of transmission. The second type of dip shows a finite
transmission for a small number of side chains [2 side chains
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in Fig. 2(b)]. Upon an increase in the number of equally
spaced side chains grafted to the backbone, the resonant dip
widens into a stop band (i.e., band gap) for compositional
waves. This widening suggests the possibility of reinforce-
ment in the long-range order of the network through signal
conduction. The transmission coefficient associated with the
second type of dip reaches values approaching zero as the
number of chains increases. For large numbers of side
chains, the second-type dips form passing gaps in the trans-
mission spectrum. These latter band gaps result from the
scattering of compositional waves traveling along the back-
bone by a periodic array of side chains. The transmission
spectrum of a cellular network composed of equally spaced
side chains containing the same number of cells has therefore
two signatures in the form of stop bands. One signature re-
sults from the resonant filtering of the side chains and de-
pends on the number of cells in the side chains. The second
spectral signature is associated with the periodic arrangement
of the side chains along the backbone.

The existence of spectral signatures in the form of zeros
of transmission and stop bands that are characteristic of two
different structural features of the network would therefore
allow cells along the backbone to sense the architecture of
the network via, as discussed earlier, Ca®* signal frequency-
dependent phosphorylation. A question that arises is the
separability of these signatures. To answer this question, we
report in Fig. 4 the effect of random variations in the length
of the side chains and the separation distance between the
chains on the transmission spectrum of compositional waves
along the backbone. The transmission spectra in Figs. 4(a)
and 4(b) are obtained by generating the positions p and/or
lengths L' of the side chains from a uniform distribution of
random numbers within desired lower and upper limits. Fig-
ure 4(c) is the reference spectrum where all chains have the
same length (side chain composed of five cells) and same
separation distance (four backbone cell spacing). Random-
ization of the separation distance between the side chains
eliminates some of the passing bands [see Fig. 4(b)] that
were present in the reference spectrum but retains passing
bands centered on ka, equal to 0.9, 1.85, 2.5, and 3. Consid-
ering a periodically grafted side chains with random length,
the spectrum of Fig. 4(a) still possesses a set of passing
bands centered on ka, of 1.2, 2.2, 2.9. While the low wave-
number passing band is retained in both cases of random
structures, the other passing bands observed for the random
spacing or the random length structures belong to two differ-
ent separable sets. These two separate sets of passing bands
are both present in the periodic constant length network. Fi-
nally, we calculated the transmission spectrum for a structure
with simultaneous randomness in chain spacing and chain
length (not illustrated). In this case only the small wave-
number passing band survives with zero transmission for
all other wave numbers. The separability on the scale of
wave numbers of the passing bands associated with the side
chains length and separation distance indicate that cells
along the backbone distance away from the side chains might
be able to distinguish the structural features of the network
architecture. This separability results from the fact that the
stop bands in transmission along the main chain have two
different origins, one originates from resonances with the
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FIG. 4. Transmission coefficient, |7(iko)|? along the infinite mul-
ticellular chain backbone as a function of kay for (a) N,=100 side
chains with fixed spacing p;,;—p;=4 and length, L', distributed
randomly between 1 and 5, (b) N.=100 side chains with fixed
length L"=5 but with chain spacing p;,;—p; randomly distributed
between 1 and 4, and (c) N.=40 side chains arranged periodically
every four cells and with fixed length L'=5.

side branches that are nearly position independent but length
dependent and a second one results from scattering by the
periodic arrangement of the side branches.

Finally, we illustrate in Fig. 5, the separation of structural
information in the transmission spectrum of a periodic array
of equal length side chains with one single defect. This de-
fect takes the form of a single chain with an unusually long
length. Two lengths of the defect chain are considered (10
and 20 cells). The overall spectrum of the defected architec-
tures retains the characteristics of the perfect reference one.
However, one clearly identifies zeros of transmission that
form within the passing bands of the reference system. The
number of zeros of transmission and the wave number at
which they occur depends on the number of cells within the
defected chain. The wave number of the narrow defect stop
bands [Figs. 5(a) and 5(b)] might, therefore, enable a back-
bone cell to sense the presence of the defect. The position of
the defect chain in the periodic array of side chains does not
produce a specific signature (not shown).
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along the infinite mul-
ticellular chain backbone as a function of ka, for N.=40 side chains
with fixed spacing p;,;—p;=4 and fixed length, L' =5 but for chain
20 which has a length of (a) 10 cells and (b) 20 cells. (d) is the
reference network with the 20th chain five-cell long.

IV. CONCLUSIONS

We present a theoretical model for information transfer in
complex cellular networks representative of endothelial cells
in the vascular tree. This model enables the calculation of the
transmission spectrum of propagating compositional waves
in multicellular architectures. We consider compositional
waves originating from negative feedback loops between
Ca”* and IP; in endothelial cells, an important signaling sys-
tem in endothelial cells. These waves are shaped by the con-
nection topologies of the networks of endothelial cells. A
model of linear endothelial cell chain with side branches re-
veals two mechanisms that control global signal propagation,
namely, resonance filtering and scattering by periodic struc-
tures. It is seen that both the length and position of side
branches affect the long-range compositional wave behavior,
i.e., the ability of the network to “communicate” information
regarding long-range order. This information is encoded in a
transmission spectrum of compositional waves which neces-
sitates cellular control over calcium and IP; self-regulation
as well as oscillation frequency via calcium regulation of 1P
concentration. The structural information encoded in the
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wave-number (frequency) transmission spectrum might,
therefore, be decodable by individual cells, for instance, via
intracellular pathways such as frequency-dependent protein
phosphorylation by a Ca?*-calmodulin activated kinase [22].

The objective of this paper is to demonstrate the existence
of architecture-dependent signals in multicellular networks.
It is hoped that our model can provide a framework for de-
signing new experiments to identify similar signal mecha-
nisms in biological media constituted of endothelial cell net-
works. Examples of such networks include mature or
immature vasculatures. We focused in the present paper on
networks composed of finite side branches attached to a

PHYSICAL REVIEW E 81, 041915 (2010)

backbone as prototypical models of complex architectures.
While these networks may be a reasonable representation of
an immature plexus, they do not represent the hierarchical
vascular tree of a mature vasculature. The Green’s-function-
based method we have used here, however, is able to handle
network architectures composed of loops and segments of
endothelial cells organized in parallel and series arrange-
ments as more realistic descriptions of mature vascular net-
works. Finally, the linear method that we reported, likely
needs to be extended to include nonlinear effects to account
for signal conduction beyond small excursion from stable
compositional points.
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